Go back to OCM 12c Preparation Project
Hands On Lab – Index
[1] Column group statistics
1.1 Creating and Gathering Statistics on Column Groups Automatic
1.2 Creating and Gathering Statistics on Column Groups Manually
[2] Expression statistics
[3] Automatic Column Group Detection
3.1 Automatic Column Group Detection and Dynamic Statistics
3.2 Automatic Column Group Detection and Statistics Feedback
3.3 Automatic Column Group Detection and SQL Plan Directives
Extended statistics were introduced in Oracle 11g to allow statistics to be gathered on groups of columns, to highlight the relationship between them, or on expressions. In Oracle 11gR1, extended statistics had to be created manually for column groups. In Oracle 11gR2, the DBMS_STATS.SEED_COL_USAGE procedure was added, allowing Oracle to determine which column group statistics would be useful, based on a specified SQL Tuning Set or a specific monitoring period. Oracle 12c introduced automatic column group detection, but as you will see when working through the sections below, the circumstances where it is triggered can appear less than obvious. -> DBMS_STATS enables you to collect extended statistics, which are statistics that can improve cardinality -> estimates when multiple predicates exist on different columns of a table, or when predicates use expressions. -> An extension is either a column group or an expression. Oracle Database supports the following types of extended statistics: [1] Column group statistics -> This type of extended statistics can improve cardinality estimates when multiple columns from the same table occur together in a SQL statement. -> An example might be a car make and model, or a city and state. Why Column Group Statistics Are Needed: Example The following query of the DBA_TAB_COL_STATISTICS table shows information about statistics that have been gathered on the columns cust_state_province and country_id from the sh.customers table: COL COLUMN_NAME FORMAT a20 COL NDV FORMAT 999 SELECT COLUMN_NAME, NUM_DISTINCT AS "NDV", HISTOGRAM FROM DBA_TAB_COL_STATISTICS WHERE OWNER = 'SH' AND TABLE_NAME = 'CUSTOMERS' AND COLUMN_NAME IN ('CUST_STATE_PROVINCE', 'COUNTRY_ID'); Sample output is as follows: COLUMN_NAME NDV HISTOGRAM -------------------- ---------- --------------- CUST_STATE_PROVINCE 145 FREQUENCY COUNTRY_ID 19 FREQUENCY As shown in the following query, 3341 customers reside in California: SELECT COUNT(*) FROM sh.customers WHERE cust_state_province = 'CA'; COUNT(*) ---------- 3341 Consider an explain plan for a query of customers in the state CA and in the country with ID 52790 (USA): EXPLAIN PLAN FOR SELECT * FROM sh.customers WHERE cust_state_province = 'CA' AND country_id=52790; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY); PLAN_TABLE_OUTPUT -------------------------------------------------------------------------------- Plan hash value: 2008213504 ------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 20 | 3780 | 423 (1)| 00:00:01 | |* 1 | TABLE ACCESS FULL| CUSTOMERS | 20 | 3780 | 423 (1)| 00:00:01 | ------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- PLAN_TABLE_OUTPUT -------------------------------------------------------------------------------- 1 - filter("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"=52790) Based on the single-column statistics for the country_id and cust_state_province columns, the optimizer estimates that the query of California customers in the USA will return 20 rows. In fact, 3341 customers reside in California, but the optimizer does not know that California is in the USA, and so greatly underestimates cardinality by assuming that both predicates reduce the number of returned rows. You can make the optimizer aware of the real-world relationship between values in country_id and cust_state_province by gathering column group statistics. These statistics enable the optimizer to give a more accurate cardinality estimate. Table 13-4 DBMS_STATS Column Group Program Units SEED_COL_USAGE -> Iterates over the SQL statements in the specified workload, compiles them, and then seeds column usage information for the columns that appear in these statements. -> To determine the appropriate column groups, the database must observe a representative workload. -> You do not need to run the queries themselves during the monitoring period. Instead, you can run EXPLAIN PLAN for some longer-running queries in your workload to ensure that the database is recording column group information for these queries. REPORT_COL_USAGE -> Generates a report that lists the columns that were seen in filter predicates, join predicates, and GROUP BY clauses in the workload. -> You can use this function to review column usage information recorded for a specific table. CREATE_EXTENDED_STATS -> Creates extensions, which are either column groups or expressions. -> The database gathers statistics for the extension when either a user-generated or automatic statistics gathering job gathers statistics for the table. -> Detecting Useful Column Groups for a Specific Workload You can use DBMS_STATS.SEED_COL_USAGE and REPORT_COL_USAGE to determine which column groups are required for a table based on a specified workload. This technique is useful when you do not know which extended statistics to create. This technique does not work for expression statistics. Note: You can seed column usage from a SQL tuning set (see Managing SQL Tuning Sets ). 1.1 Creating and Gathering Statistics on Column Groups Automatic ==== HOL ==== Assumptions This tutorial assumes the following: Cardinality estimates have been incorrect for queries of the sh.customers_test table (created from the customers table) that use predicates referencing the columns country_id and cust_state_province. You want the database to monitor your workload for 5 minutes (300 seconds). You want the database to determine which column groups are needed automatically. To detect column groups: 1. Connect SQL*Plus to the database as user sh, and then create the customers_test table and gather statistics for it: CONNECT SH/SH DROP TABLE customers_test; CREATE TABLE customers_test AS SELECT * FROM customers; EXEC DBMS_STATS.GATHER_TABLE_STATS(user, 'customers_test'); 2. Enable workload monitoring. In a different SQL*Plus session, connect as SYS and run the following PL/SQL program to enable monitoring for 300 seconds: BEGIN DBMS_STATS.SEED_COL_USAGE(null,null,300); END; / 3. As user sh, run explain plans for two queries in the workload. The following examples show the explain plans for two queries on the customers_test table: SQL> SELECT count(*) FROM customers_test WHERE cust_city = 'Los Angeles' AND cust_state_province = 'CA' AND country_id = 52790; COUNT(*) ---------- 932 EXPLAIN PLAN FOR SELECT * FROM customers_test WHERE cust_city = 'Los Angeles' AND cust_state_province = 'CA' AND country_id = 52790; SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table', null,'basic rows')); PLAN_TABLE_OUTPUT --------------------------------------------------------------------------- Plan hash value: 4115398853 ---------------------------------------------------- | Id | Operation | Name | Rows | ---------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 1 | TABLE ACCESS FULL| CUSTOMERS_TEST | 1 | ---------------------------------------------------- 8 rows selected. EXPLAIN PLAN FOR SELECT country_id, cust_state_province, count(cust_city) FROM customers_test GROUP BY country_id, cust_state_province; SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table', null,'basic rows')); PLAN_TABLE_OUTPUT --------------------------------------------------------------------------- Plan hash value: 3050654408 ----------------------------------------------------- | Id | Operation | Name | Rows | ----------------------------------------------------- | 0 | SELECT STATEMENT | | 1949 | | 1 | HASH GROUP BY | | 1949 | | 2 | TABLE ACCESS FULL| CUSTOMERS_TEST | 55500 | ----------------------------------------------------- 9 rows selected. The first plan shows a cardinality of 1 row for a query that returns 932 rows.The second plan shows a cardinality of 1949 rows for a query that returns 145 rows. 4. Optionally, review the column usage information recorded for the table. SET LONG 100000 SET LINES 120 SET PAGES 0 SELECT DBMS_STATS.REPORT_COL_USAGE(user, 'customers_test') FROM DUAL; LEGEND: ....... EQ : Used in single table EQuality predicate RANGE : Used in single table RANGE predicate LIKE : Used in single table LIKE p redicate NULL : Used in single table is (not) NULL pre dicate EQ_JOIN : Used in EQuality JOIN predicate NONEQ_JOIN : Used in NON EQuality JOIN predicate FILTER : Used in single table FILTER predicate JOIN : Used in JOIN predicate GROUP_BY : Used in GROUP BY expression ................................................... ............................ ################################################## ############################# COLUMN USAGE REPORT FOR SH.CUSTOMERS_TEST ......................................... 1. COUNTRY_ID : EQ 2. CUST_CITY : EQ 3. CUST_STATE_PROVINCE : EQ 4. (CUST_CITY, CUST_STATE_PROVINCE, COUNTRY_ID) : FILTER 5. (CUST_STATE_PROVINCE, COUNTRY_ID) : GR OUP_BY #################################################### ########################### The sets of columns in the FILTER and GROUP_BY report are candidates for column groups. #->Creating Column Groups Detected During Workload Monitoring Assumptions This tutorial assumes that you have performed the steps in "Detecting Useful Column Groups for a Specific Workload". To create column groups: 1. Create column groups for the customers_test table based on the usage information captured during the monitoring window. SELECT DBMS_STATS.CREATE_EXTENDED_STATS(user, 'customers_test') FROM DUAL; Sample output appears below: ############################################################ ################### EXTENSIONS FOR SH.CUSTOMERS_TEST ................................ 1. (CUST_CITY, CUST_STATE_PROVINCE, COUNTRY_ID) : SYS_STUMZ$C3AI HLPBROI#SKA58H_N created 2. (CUST_STATE_PROVINCE, COUNTRY_ID) : SYS_STU#S#WF25 Z#QAHIHE#MOFFMM_ created ####################################################### ######################## The database created two column groups for customers_test: one column group for the filter predicate and one group for the GROUP BY operation. 2. Regather table statistics. Run GATHER_TABLE_STATS to regather the statistics for customers_test: EXEC DBMS_STATS.GATHER_TABLE_STATS(user,'customers_test'); 3. As user sh, run explain plans for two queries in the workload. Check the USER_TAB_COL_STATISTICS view to determine which additional statistics were created by the database: SELECT COLUMN_NAME, NUM_DISTINCT, HISTOGRAM FROM USER_TAB_COL_STATISTICS WHERE TABLE_NAME = 'CUSTOMERS_TEST' ORDER BY 1; ............ ............ SYS_STU#S#WF25Z#QAHI 145 NONE HE#MOFFMM_ SYS_STUMZ$C3AIHLPBRO 620 HYBRID I#SKA58H_N This example shows the two column group names returned from the DBMS_STATS.CREATE_EXTENDED_STATS function. The column group created on CUST_CITY, CUST_STATE_PROVINCE, and COUNTRY_ID has a height-balanced histogram. 4. Explain the plans again. EXPLAIN PLAN FOR SELECT * FROM customers_test WHERE cust_city = 'Los Angeles' AND cust_state_province = 'CA' AND country_id = 52790; SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table', null,'basic rows')); ---------------------------------------------------- | Id | Operation | Name | Rows | ---------------------------------------------------- | 0 | SELECT STATEMENT | | 1093 | | 1 | TABLE ACCESS FULL| CUSTOMERS_TEST | 1093 | ---------------------------------------------------- EXPLAIN PLAN FOR SELECT country_id, cust_state_province, count(cust_city) FROM customers_test GROUP BY country_id, cust_state_province; SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table', null,'basic rows')); Plan hash value: 3050654408 ----------------------------------------------------- | Id | Operation | Name | Rows | ----------------------------------------------------- | 0 | SELECT STATEMENT | | 145 | | 1 | HASH GROUP BY | | 145 | | 2 | TABLE ACCESS FULL| CUSTOMERS_TEST | 55500 | ----------------------------------------------------- 1.2 Creating and Gathering Statistics on Column Groups Manually In some cases, you may know the column group that you want to create. The METHOD_OPT argument of the DBMS_STATS.GATHER_TABLE_STATS function can create and gather statistics on a column group automatically. You can create a new column group by specifying the group of columns using FOR COLUMNS. Assumptions This tutorial assumes the following: You want to create a column group for the cust_state_province and country_id columns in the customers table in sh schema. You want to gather statistics (including histograms) on the entire table and the new column group. To create a column group and gather statistics for this group: 1. Start SQL*Plus and connect to the database as the sh user. 2. Create the column group and gather statistics. BEGIN DBMS_STATS.GATHER_TABLE_STATS( 'sh','customers', METHOD_OPT => 'FOR ALL COLUMNS SIZE SKEWONLY ' || 'FOR COLUMNS SIZE SKEWONLY (cust_state_province,country_id)' ); END; / #-> Displaying Column Group Information -> To obtain the name of a column group, use the DBMS_STATS.SHOW_EXTENDED_STATS_NAME function or a database view. -> You can also use views to obtain information such as the number of distinct values, and whether the column group has a histogram. Assumptions This tutorial assumes the following: You created a column group for the cust_state_province and country_id columns in the customers table in sh schema. You want to determine the column group name, the number of distinct values, and whether a histogram has been created for a column group. To monitor a column group: 1. Start SQL*Plus and connect to the database as the sh user. 2. To determine the column group name, do one of the following. SELECT SYS.DBMS_STATS.SHOW_EXTENDED_STATS_NAME( 'sh','customers', '(cust_state_province,country_id)' ) col_group_name FROM DUAL; COL_GROUP_NAME ---------------- SYS_STU#S#WF25Z#QAHIHE#MOFFMM_ SELECT EXTENSION_NAME, EXTENSION FROM USER_STAT_EXTENSIONS WHERE TABLE_NAME='CUSTOMERS'; EXTENSION_NAME EXTENSION ----------------------------------------------------------------------- SYS_STU#S#WF25Z#QAHIHE#MOFFMM_ ("CUST_STATE_PROVINCE","COUNTRY_ID") 3. Query the number of distinct values and find whether a histogram has been created for a column group. SELECT e.EXTENSION col_group, t.NUM_DISTINCT, t.HISTOGRAM FROM USER_STAT_EXTENSIONS e, USER_TAB_COL_STATISTICS t WHERE e.EXTENSION_NAME=t.COLUMN_NAME AND e.TABLE_NAME=t.TABLE_NAME AND t.TABLE_NAME='CUSTOMERS'; COL_GROUP NUM_DISTINCT HISTOGRAM ------------------------------------------------------------------- ("COUNTRY_ID","CUST_STATE_PROVINCE") 145 FREQUENCY #-> Dropping a Column Group Assumptions This tutorial assumes the following: You created a column group for the cust_state_province and country_id columns in the customers table in sh schema. You want to drop the column group. To drop a column group: 1. Start SQL*Plus and connect to the database as the sh user. 2. Drop the column group. BEGIN DBMS_STATS.DROP_EXTENDED_STATS( 'sh', 'customers', '(cust_state_province, country_id)' ); END; / [2] Expression statistics When Expression Statistics Are Useful: Example The following query of the sh.customers table shows that 3341 customers are in the state of California: sys@PROD> SELECT COUNT(*) FROM sh.customers WHERE cust_state_province='CA'; COUNT(*) ---------- 3341 Consider the plan for the same query with the LOWER() function applied: EXPLAIN PLAN FOR SELECT * FROM sh.customers WHERE LOWER(cust_state_province)='ca'; select * from table(dbms_xplan.display); Plan hash value: 2008213504 ------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 555 | 108K| 423 (1)| 00:00:01 | |* 1 | TABLE ACCESS FULL| CUSTOMERS | 555 | 108K| 423 (1)| 00:00:01 | ------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(LOWER("CUST_STATE_PROVINCE")='ca') 13 rows selected. Because no expression statistics exist for LOWER(cust_state_province)='ca', the optimizer estimate is significantly off. You can use DBMS_STATS procedures to correct these estimates. Creating Expression Statistics You can use DBMS_STATS to create statistics for a user-specified expression. You can use either of the following program units: GATHER_TABLE_STATS procedure CREATE_EXTENDED_STATISTICS function followed by the GATHER_TABLE_STATS procedure Assumptions This tutorial assumes the following: Selectivity estimates are inaccurate for queries of sh.customers that use the UPPER(cust_state_province) function. You want to gather statistics on the UPPER(cust_state_province) expression. To create expression statistics: 1. Start SQL*Plus and connect to the database as the sh user. 2. Gather table statistics. BEGIN DBMS_STATS.GATHER_TABLE_STATS( 'sh', 'customers', method_opt => 'FOR ALL COLUMNS SIZE SKEWONLY ' || 'FOR COLUMNS (LOWER(cust_state_province)) SIZE SKEWONLY' ); END; / Displaying Expression Statistics You can use the database view DBA_STAT_EXTENSIONS and the DBMS_STATS.SHOW_EXTENDED_STATS_NAME function to obtain information about expression statistics. You can also use views to obtain information such as the number of distinct values, and whether the column group has a histogram. DBMS_STATS. FUNCTION SHOW_EXTENDED_STATS_NAME RETURNS VARCHAR2 Argument Name Type In/Out Default? ------------------------------ ----------------------- ------ -------- OWNNAME VARCHAR2 IN TABNAME VARCHAR2 IN EXTENSION VARCHAR2 IN SELECT SYS.DBMS_STATS.SHOW_EXTENDED_STATS_NAME( 'sh','customers',EXTENSION) from USER_STAT_EXTENSIONS WHERE TABLE_NAME='CUSTOMERS'; SYS_STUBPHJSBRKOIK9O2YV3W8HOUE Assumptions This tutorial assumes the following: You created extended statistics for the LOWER(cust_state_province) expression. You want to determine the column group name, the number of distinct values, and whether a histogram has been created for a column group. To monitor expression statistics: 1. Start SQL*Plus and connect to the database as the sh user. 2. Query the name and definition of the statistics extension. COL EXTENSION_NAME FORMAT a30 COL EXTENSION FORMAT a35 SELECT EXTENSION_NAME, EXTENSION FROM USER_STAT_EXTENSIONS WHERE TABLE_NAME='CUSTOMERS'; EXTENSION_NAME EXTENSION ------------------------------ ------------------------------ SYS_STUBPHJSBRKOIK9O2YV3W8HOUE (LOWER("CUST_STATE_PROVINCE")) 3. Query the number of distinct values and find whether a histogram has been created for the expression. SELECT e.EXTENSION expression, t.NUM_DISTINCT, t.HISTOGRAM FROM USER_STAT_EXTENSIONS e, USER_TAB_COL_STATISTICS t WHERE e.EXTENSION_NAME=t.COLUMN_NAME AND e.TABLE_NAME=t.TABLE_NAME AND t.TABLE_NAME='CUSTOMERS'; EXPRESSION NUM_DISTINCT HISTOGRAM ------------------------------------------------------------------- (LOWER("CUST_STATE_PROVINCE")) 145 FREQUENCY #-> Dropping Expression Statistics Use the DBMS_STATS.DROP_EXTENDED_STATS function to delete a column group from a table. Assumptions This tutorial assumes the following: You created extended statistics for the LOWER(cust_state_province) expression. You want to drop the expression statistics. To drop expression statistics: 1. Start SQL*Plus and connect to the database as the sh user. 2. Drop the column group. BEGIN DBMS_STATS.DROP_EXTENDED_STATS( 'sh' , 'customers' , '(LOWER(cust_state_province))' ); END; / Note: You cannot create extended statistics on virtual columns. [3] Automatic Column Group Detection Oracle 12c introduced automatic column group detection, but as you will see when working through the sections below, the circumstances where it is triggered can appear less than obvious. #Setup $ sqlplus sys/oracle_4U@pdb2 as sysdba SQL> ALTER SYSTEM FLUSH SHARED_POOL; System altered. SQL> grant dba to test identified by test ; Grant succeeded. SQL> alter user test default tablespace test quota unlimited on test; User altered. SQL> connect test/test@pdb2 Connected. SQL> SQL> show user USER is "TEST" drop table tab1 purge; test table contains columns to indicate gender and the presence of a Y chromosome and the presence of a beard. These columns have check constraints to tell the optimizer about the allowable values, as well as indexes on the columns. CREATE TABLE tab1 ( id NUMBER, name VARCHAR2(20), gender VARCHAR2(1), y_chromosome VARCHAR2(1), beard VARCHAR2(1), CONSTRAINT tab1_pk PRIMARY KEY (id), CONSTRAINT tab1_gender_chk CHECK (gender IN ('M', 'F')), CONSTRAINT tab1_has_y_chromosome_chk CHECK (y_chromosome IN ('Y', 'N')), CONSTRAINT tab1_has_beard_chk CHECK (beard IN ('Y', 'N')) ); INSERT INTO tab1 SELECT level, DBMS_RANDOM.string('L',TRUNC(DBMS_RANDOM.value(10,16))) AS name, CASE WHEN MOD(rownum, 2) = 0 THEN 'M' ELSE 'F' END AS gender, CASE WHEN MOD(rownum, 2) = 0 THEN 'Y' ELSE 'N' END AS y_chromosome, CASE WHEN MOD(rownum, 2) = 0 THEN DECODE(TRUNC(DBMS_RANDOM.value(1,3)), 1, 'Y', 'N') ELSE 'N' END AS beard FROM dual CONNECT BY level <= 10000; COMMIT; SELECT gender, y_chromosome, beard, COUNT(*) AS total FROM tab1 GROUP BY gender, y_chromosome, beard ORDER BY 1,2,3; 2 3 4 G Y B TOTAL - - - ---------- F N N 5000 M Y N 2535 M Y Y 2465 We know that genetically speaking, all males have a Y chromosome and all females do not. Our data shows approximately 50% of the men have beards and none of the women do. The optimizer is unaware of the relationships between these columns, so it has to estimate based on each column having two possible allowable values. Assuming the data is spread evenly amongst the allowable values it would expect half of the rows to be marked as male, half to be marked as having a Y chromosome and half to me marked as having a beard. If there were no relationship between the columns, it would expect 10000/2/2/2=1250 rows to be marked as female, not having a Y chromosome and not having a beard. The following sections use a that query pulls out all the rows matching this criteria and displays the execution plan used to return the data, including the expected and actual cardinalities. 3.1 Automatic Column Group Detection and Dynamic Statistics Note: Make sure you have repeated the setup before starting this test. CONN test/test@pdb1 SELECT count (*) FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N'; SQL> SET LINESIZE 200 PAGESIZE 100 SELECT * FROM TABLE(DBMS_XPLAN.display_cursor(format => 'allstats last')); PLAN_TABLE_OUTPUT -------------------------------------------------------------------------- SQL_ID 577pbb7hm1j8x, child number 0 ------------------------------------- SELECT /*+ GATHER_PLAN_STATISTICS */ * FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N' Plan hash value: 2211052296 ------------------------------------------------------------------------------------ | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | | 5000 |00:00:00.01 | 401 | |* 1 | TABLE ACCESS FULL| TAB1 | 1 | 5834 | 5000 |00:00:00.01 | 401 | ------------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("GENDER"='F' AND "Y_CHROMOSOME"='N' AND "BEARD"='N')) Note ----- - dynamic statistics used: dynamic sampling (level=2) 23 rows selected. A comparison of the expected and actual rows show the cardinality estimate was accurate. That lack of adequate statistics meant dynamic statistics were necessary to generate the optimum execution plan. Notice the query is not reoptimizable. COLUMN sql_text FORMAT A40 COLUMN is_reoptimizable FORMAT A16 SELECT sql_text, is_reoptimizable FROM v$sql WHERE sql_id = '577pbb7hm1j8x'; SQL_TEXT IS_REOPTIMIZABLE ---------------------------------------- ---------------- SELECT /*+ GATHER_PLAN_STATISTICS */ N * FROM tab1 WHERE gender = 'F' AN D y_chromosome = 'N' AND beard = ' N' Using the DBMS_STATS.REPORT_COL_USAGE function, we can see the basic column usage has been detected, but there are no FILTER predicates in the reports, which we would expect if a column group had been detected. SET LONG 100000 SET LINES 120 SET PAGES 50 SELECT DBMS_STATS.report_col_usage('TEST', 'TAB1') FROM dual; DBMS_STATS.REPORT_COL_USAGE('TEST','TAB1') -------------------------------------------------------------------------------- LEGEND: ....... EQ : Used in single table EQuality predicate RANGE : Used in single table RANGE predicate LIKE : Used in single table LIKE p redicate NULL : Used in single table is (not) NULL pre dicate EQ_JOIN : Used in EQuality JOIN predicate NONEQ_JOIN : Used in NON EQuality JOIN predicate FILTER : Used in single table FILTER predicate JOIN : Used in JOIN predicate GROUP_BY : Used in GROUP BY expression ................................................... ............................ ################################################## ############################# COLUMN USAGE REPORT FOR TEST.TAB1 ................................. 1. BEARD : EQ 2. GENDER : EQ 3. Y_CHROMOSOME : EQ ############################################# ################################## There was no cardinality misestimate, so no SQL plan directives were created. SQL> EXEC DBMS_SPD.flush_sql_plan_directive; PL/SQL procedure successfully completed. SET LINESIZE 200 COLUMN dir_id FORMAT A20 COLUMN owner FORMAT A10 COLUMN object_name FORMAT A10 COLUMN col_name FORMAT A12 SELECT TO_CHAR(d.directive_id) dir_id, o.owner, o.object_name, o.subobject_name col_name, o.object_type, d.type, d.state, d.reason FROM dba_sql_plan_directives d, dba_sql_plan_dir_objects o WHERE d.directive_id=o.directive_id AND o.owner = 'TEST' ORDER BY 1,2,3,4,5; no rows selected As expected, running the test query a second time results in no change in the execution plan. SELECT /*+ GATHER_PLAN_STATISTICS */ * FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N'; SET LINESIZE 200 PAGESIZE 100 SELECT * FROM TABLE(DBMS_XPLAN.display_cursor(format => 'allstats last')); More importantly, it doesn't alter the column group detection. SET LONG 100000 SET LINES 120 SET PAGES 50 SELECT DBMS_STATS.report_col_usage('TEST', 'TAB1') FROM dual; 3.2 Automatic Column Group Detection and Statistics Feedback CONN test/test@pdb2 EXEC DBMS_STATS.gather_table_stats(USER, 'TAB1'); SELECT /*+ GATHER_PLAN_STATISTICS */ * FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N'; SET LINESIZE 200 PAGESIZE 100 SELECT * FROM TABLE(DBMS_XPLAN.display_cursor(format => 'allstats last')); PLAN_TABLE_OUTPUT ------------------------------------------------------------------------------------- SQL_ID 577pbb7hm1j8x, child number 0 ------------------------------------- SELECT /*+ GATHER_PLAN_STATISTICS */ * FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N' Plan hash value: 2211052296 ------------------------------------------------------------------------------------ | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | | 5000 |00:00:00.01 | 404 | |* 1 | TABLE ACCESS FULL| TAB1 | 1 | 1250 | 5000 |00:00:00.01 | 404 | ------------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("GENDER"='F' AND "Y_CHROMOSOME"='N' AND "BEARD"='N')) The presence of statistics means dynamic statistics weren't used and as such, the optimizer was unaware of the relationship between the columns and estimated the cardinality incorrectly. Notice the query is now marked as reoptimizable. SQL> COLUMN sql_text FORMAT A40 COLUMN is_reoptimizable FORMAT A16 SELECT sql_text, is_reoptimizable FROM v$sql WHERE sql_id = '577pbb7hm1j8x'; SQL_TEXT IS_REOPTIMIZABLE ---------------------------------------- ---------------- SELECT /*+ GATHER_PLAN_STATISTICS */ Y * FROM tab1 WHERE gender = 'F' AN D y_chromosome = 'N' AND beard = ' N' Using the DBMS_STATS.REPORT_COL_USAGE function, we can see the basic column usage has been detected, but there are no FILTER predicates in the reports, which we would expect if a column group had been detected. SET LONG 100000 SET LINES 120 SET PAGES 50 SELECT DBMS_STATS.report_col_usage('TEST', 'TAB1') FROM dual; If we run the test query again, we can see a more accurate cardinality has been estimated because statistics feedback has been used to adjust the estimate. SELECT /*+ GATHER_PLAN_STATISTICS */ * FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N'; SET LINESIZE 200 PAGESIZE 100 SELECT * FROM TABLE(DBMS_XPLAN.display_cursor(format => 'allstats last')); PLAN_TABLE_OUTPUT ------------------------------------------------------------------------------------- SQL_ID 577pbb7hm1j8x, child number 1 ------------------------------------- SELECT /*+ GATHER_PLAN_STATISTICS */ * FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N' Plan hash value: 2211052296 ------------------------------------------------------------------------------------ | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | | 5000 |00:00:00.01 | 404 | |* 1 | TABLE ACCESS FULL| TAB1 | 1 | 5000 | 5000 |00:00:00.01 | 404 | ------------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("GENDER"='F' AND "Y_CHROMOSOME"='N' AND "BEARD"='N')) Note ----- - statistics feedback used for this statement 23 rows selected. Using the DBMS_STATS.REPORT_COL_USAGE function again, there is still no sign of the FILTER predicate in the report. SET LONG 100000 SET LINES 120 SET PAGES 50 SELECT DBMS_STATS.report_col_usage('TEST', 'TAB1') FROM dual; We can see the query is no longer reoptimizable. COLUMN sql_text FORMAT A40 COLUMN is_reoptimizable FORMAT A16 SELECT sql_text, is_reoptimizable FROM v$sql WHERE sql_id = '577pbb7hm1j8x';SQL> SQL> SQL> 2 3 SQL_TEXT IS_REOPTIMIZABLE ---------------------------------------- ---------------- SELECT /*+ GATHER_PLAN_STATISTICS */ Y * FROM tab1 WHERE gender = 'F' AN D y_chromosome = 'N' AND beard = ' N' SELECT /*+ GATHER_PLAN_STATISTICS */ N * FROM tab1 WHERE gender = 'F' AN D y_chromosome = 'N' AND beard = ' N' 1.3 Automatic Column Group Detection and SQL Plan Directives We are effectively repeated the previous test here, but we will check the SQL plan directives along the way. Gather statistics and run the following test query. CONN test/test@pdb2 EXEC DBMS_STATS.gather_table_stats(USER, 'TAB1'); SELECT /*+ GATHER_PLAN_STATISTICS */ * FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N'; SQL> set linesize 200 pagesize 100 SQL> select * from table(dbms_xplan.display_cursor(format => 'allstats last')); PLAN_TABLE_OUTPUT -------------------------------------------------------------------------------------- SQL_ID 577pbb7hm1j8x, child number 0 ------------------------------------- SELECT /*+ GATHER_PLAN_STATISTICS */ * FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N' Plan hash value: 2211052296 ------------------------------------------------------------------------------------ | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | | 5000 |00:00:00.01 | 404 | |* 1 | TABLE ACCESS FULL| TAB1 | 1 | 1250 | 5000 |00:00:00.01 | 404 | ------------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("GENDER"='F' AND "Y_CHROMOSOME"='N' AND "BEARD"='N')) 19 rows selected. The presence of statistics means dynamic statistics weren't used and as such, the optimizer was unaware of the relationship between the columns and estimated the cardinality incorrectly. Using the DBMS_STATS.REPORT_COL_USAGE function, we can see the basic column usage has been detected, but there are no FILTER predicates in the reports, which we would expect if a column group had been detected. SET LONG 100000 SET LINES 120 SET PAGES 50 SELECT DBMS_STATS.report_col_usage('TEST', 'TAB1') FROM dual; Notice the query is now marked as reoptimizable. SQL> COLUMN sql_text FORMAT A40 COLUMN is_reoptimizable FORMAT A16 SELECT sql_text, is_reoptimizable FROM v$sql WHERE sql_id = '577pbb7hm1j8x'; SQL_TEXT IS_REOPTIMIZABLE ---------------------------------------- ---------------- SELECT /*+ GATHER_PLAN_STATISTICS */ Y * FROM tab1 WHERE gender = 'F' AN D y_chromosome = 'N' AND beard = ' N' Let's check to see if any SQL plan directives were created as a result of the previous cardinality misestimates. Remember to flush them first, or they might not be visible. EXEC DBMS_SPD.flush_sql_plan_directive; SQL> SET LINESIZE 200 COLUMN dir_id FORMAT A20 COLUMN owner FORMAT A10 COLUMN object_name FORMAT A10 COLUMN col_name FORMAT A12 SELECT TO_CHAR(d.directive_id) dir_id, o.owner, o.object_name, o.subobject_name col_name, o.object_type, d.type, d.state, d.reason FROM dba_sql_plan_directives d, dba_sql_plan_dir_objects o WHERE d.directive_id=o.directive_id AND o.owner = 'TEST' ORDER BY 1,2,3,4,5; DIR_ID OWNER OBJECT_NAM COL_NAME OBJECT TYPE STATE REASON -------------------- ---------- ---------- ------------ ------ ---------------- ---------- ------------------------------------ 10532985814814528861 TEST TAB1 BEARD COLUMN DYNAMIC_SAMPLING USABLE SINGLE TABLE CARDINALITY MISESTIMATE 10532985814814528861 TEST TAB1 GENDER COLUMN DYNAMIC_SAMPLING USABLE SINGLE TABLE CARDINALITY MISESTIMATE 10532985814814528861 TEST TAB1 Y_CHROMOSOME COLUMN DYNAMIC_SAMPLING USABLE SINGLE TABLE CARDINALITY MISESTIMATE 10532985814814528861 TEST TAB1 TABLE DYNAMIC_SAMPLING USABLE SINGLE TABLE CARDINALITY MISESTIMATE So we now have SQL plan directives. Run the test query again. SELECT /*+ GATHER_PLAN_STATISTICS */ * FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N'; SQL> SET LINESIZE 200 PAGESIZE 100 SELECT * FROM TABLE(DBMS_XPLAN.display_cursor(format => 'allstats last'));SQL> PLAN_TABLE_OUTPUT --------------------------------------------------------------------------------------- SQL_ID 577pbb7hm1j8x, child number 1 ------------------------------------- SELECT /*+ GATHER_PLAN_STATISTICS */ * FROM tab1 WHERE gender = 'F' AND y_chromosome = 'N' AND beard = 'N' Plan hash value: 2211052296 ------------------------------------------------------------------------------------ | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ------------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | | 5000 |00:00:00.01 | 404 | |* 1 | TABLE ACCESS FULL| TAB1 | 1 | 5000 | 5000 |00:00:00.01 | 404 | ------------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("GENDER"='F' AND "Y_CHROMOSOME"='N' AND "BEARD"='N')) Note ----- - statistics feedback used for this statement 23 rows selected. The statistics feedback was still used in preference to the SQL plan directives and once again, the query is no longer reoptimizable. COLUMN sql_text FORMAT A40 COLUMN is_reoptimizable FORMAT A16 SELECT sql_text, is_reoptimizable FROM v$sql WHERE sql_id = '577pbb7hm1j8x'; SQL_TEXT IS_REOPTIMIZABLE ---------------------------------------- ---------------- SELECT /*+ GATHER_PLAN_STATISTICS */ Y * FROM tab1 WHERE gender = 'F' AN D y_chromosome = 'N' AND beard = ' N' SELECT /*+ GATHER_PLAN_STATISTICS */ N * FROM tab1 WHERE gender = 'F' AN D y_chromosome = 'N' AND beard = ' N' Using the DBMS_STATS.REPORT_COL_USAGE function again, finally we can see the FILTER predicate in the report. SET LONG 100000 SET LINES 120 SET PAGES 50 SELECT DBMS_STATS.report_col_usage('TEST', 'TAB1') FROM dual; DBMS_STATS.REPORT_COL_USAGE('TEST','TAB1') -------------------------------------------------------------------------------- LEGEND: ....... EQ : Used in single table EQuality predicate RANGE : Used in single table RANGE predicate LIKE : Used in single table LIKE p redicate NULL : Used in single table is (not) NULL pre dicate EQ_JOIN : Used in EQuality JOIN predicate NONEQ_JOIN : Used in NON EQuality JOIN predicate FILTER : Used in single table FILTER predicate JOIN : Used in JOIN predicate GROUP_BY : Used in GROUP BY expression ................................................... ............................ ################################################## ############################# COLUMN USAGE REPORT FOR TEST.TAB1 ................................. 1. BEARD : EQ 2. GENDER : EQ 3. Y_CHROMOSOME : EQ 4. (GENDER, Y_CHROMOSOME, BEARD) : FILTER ######################################################## ####################### At this point, there are still no column group statistics available. COLUMN extension_name FORMAT A30 COLUMN extension FORMAT A45 SELECT extension_name, extension FROM dba_stat_extensions WHERE table_name = 'TAB1'; Once we gather default statistics, the column group statistics are created. EXEC DBMS_STATS.gather_table_stats('TEST', 'TAB1'); COLUMN extension_name FORMAT A30 COLUMN extension FORMAT A45 SELECT extension_name, extension FROM dba_stat_extensions WHERE table_name = 'TAB1'; EXTENSION_NAME EXTENSION ------------------------------ --------------------------------------------- SYS_STSJ_NI$1E_EDU917#V63HO2OA ("GENDER","Y_CHROMOSOME","BEARD") We can see the resulting statistics in the USER_TAB_COL_STATISTICS view. COLUMN column_name FORMAT A30 SELECT column_name, num_distinct, num_nulls, histogram FROM user_tab_col_statistics WHERE table_name = 'TAB1' ORDER BY column_name; COLUMN_NAME NUM_DISTINCT NUM_NULLS HISTOGRAM ------------------------------ ------------ ---------- --------------- BEARD 2 0 FREQUENCY GENDER 2 0 FREQUENCY ID 10000 0 NONE NAME 10000 0 NONE SYS_STSJ_NI$1E_EDU917#V63HO2OA 3 0 FREQUENCY Y_CHROMOSOME 2 0 FREQUENCY #Conclusion The column group is only automatically detected during a hard parse or a reoptimization of a statement in the presence of persisted SQL plan directives. The SQL plan directive doesn't have to be used in the generation of the final execution plan, for this to happen. For a query that we would expect to trigger automatic column group detection, we seem to have at least three possible scenarios that result in different behaviour. 1. If the lack of good statistics force the use of dynamic statistics directly, no automatic column group detection will be performed. At some point, the statistics will be refreshed and one of the other scenarios will then be available. 2. If a cardinality misestimate results in both statistics feedback and SQL plan directives being produced, the statistics feedback takes priority during the reoptimization the next time the query is run. If the query is run a second time before the SQL plan directives are persisted, no automatic column group detection will be triggered during the reoptimization using statistics feedback. The next hard parse after the SQL plan directives are persisted will result in automatic column group detection, but depending on how long the statement stays in the shared pool, this could be quite a delay. 3. If SQL plan directives are persisted before the query is run a second time, automatic column groups detection is triggered during the reoptimization, whether the SQL plan directives or statistics feedback are used for the reoptimization of the execution plan. It is only after the column group is detected that default statistics gathering will be able to create the column group statistics. ====================== Path to Documentation: ====================== Documentation : Performance SQL Tuning Guide 13 Managing Optimizer Statistics: Advanced Topics ->Managing Extended Statistics 13 Managing Optimizer Statistics: Advanced Topics -> Controlling Dynamic Statistics -> Managing SQL Plan Directives
Thank you for visiting this blog 🙂